Power series expansions for Mathieu functions with small arguments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power series expansions for Mathieu functions with small arguments

Power series expansions for the even and odd angular Mathieu functions Sem(h, cos θ) and Som(h, cos θ), with small argument h, are derived for general integer values of m. The expansion coefficients that we evaluate are also useful for the calculation of the corresponding radial functions of any kind.

متن کامل

New method to obtain small parameter power series expansions of Mathieu radial and angular functions

Small parameter power series expansions for both radial and angular Mathieu functions are derived. The expansions are valid for all integer orders and apply the Stratton-Morse-Chu normalization. Three new contributions are provided: (1) explicit power series expansions for the radial functions, which are not available in the literature; (2) improved convergence rate of the power series expansio...

متن کامل

Basis Construction from Power Series Expansions of Value Functions

This paper explores links between basis construction methods in Markov decision processes and power series expansions of value functions. This perspective provides a useful framework to analyze properties of existing bases, as well as provides insight into constructing more effective bases. Krylov and Bellman error bases are based on the Neumann series expansion. These bases incur very large in...

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2000

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-00-01227-8