Power series expansions for Mathieu functions with small arguments
نویسندگان
چکیده
منابع مشابه
Power series expansions for Mathieu functions with small arguments
Power series expansions for the even and odd angular Mathieu functions Sem(h, cos θ) and Som(h, cos θ), with small argument h, are derived for general integer values of m. The expansion coefficients that we evaluate are also useful for the calculation of the corresponding radial functions of any kind.
متن کاملNew method to obtain small parameter power series expansions of Mathieu radial and angular functions
Small parameter power series expansions for both radial and angular Mathieu functions are derived. The expansions are valid for all integer orders and apply the Stratton-Morse-Chu normalization. Three new contributions are provided: (1) explicit power series expansions for the radial functions, which are not available in the literature; (2) improved convergence rate of the power series expansio...
متن کاملBasis Construction from Power Series Expansions of Value Functions
This paper explores links between basis construction methods in Markov decision processes and power series expansions of value functions. This perspective provides a useful framework to analyze properties of existing bases, as well as provides insight into constructing more effective bases. Krylov and Bellman error bases are based on the Neumann series expansion. These bases incur very large in...
متن کاملQuasi-orthogonal expansions for functions in BMO
For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2000
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-00-01227-8